Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Environ Microbiol ; 26(2): e16582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195072

RESUMO

Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.


Assuntos
Microbiota , Estramenópilas , Zosteraceae , RNA Ribossômico 16S/genética , Estramenópilas/genética , Zosteraceae/genética , Zosteraceae/microbiologia , Microbiota/genética , Folhas de Planta/microbiologia , Bactérias/genética
2.
Mol Ecol ; 33(1): e16862, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786039

RESUMO

Different host species associate with distinct gut microbes in mammals, a pattern sometimes referred to as phylosymbiosis. However, the processes shaping this host specificity are not well understood. One model proposes that barriers to microbial transmission promote specificity by limiting microbial dispersal between hosts. This model predicts that specificity levels measured across microbes is correlated to transmission mode (vertical vs. horizontal) and individual dispersal traits. Here, we leverage two large publicly available gut microbiota data sets (1490 samples from 195 host species) to test this prediction. We found that host specificity varies widely across bacteria (i.e., there are generalist and specialist bacteria) and depends on transmission mode and dispersal ability. Horizontally-like transmitted bacteria equipped with traits that facilitate switches between host (e.g., tolerance to oxygen) were found to be less specific (more generalist) than microbes without those traits, for example, vertically-like inherited bacteria that are intolerant to oxygen. Altogether, our findings are compatible with a model in which limited microbial dispersal abilities foster host specificity.


Assuntos
Microbioma Gastrointestinal , Animais , Mamíferos/microbiologia , Especificidade de Hospedeiro , Bactérias/genética , Oxigênio
3.
Microlife ; 4: uqad033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680753

RESUMO

Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.

4.
J Phycol ; 59(3): 538-551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37005360

RESUMO

Kelp are important primary producers that are colonized by diverse microbes that can have both positive and negative effects on their hosts. The kelp microbiome could support the burgeoning kelp cultivation sector by improving host growth, stress tolerance, and resistance to disease. Fundamental questions about the cultivated kelp microbiome still need to be addressed before microbiome-based approaches can be developed. A critical knowledge gap is how cultivated kelp microbiomes change as hosts grow, particularly following outplanting to sites that vary in abiotic conditions and microbial source pools. In this study we assessed if microbes that colonize kelp in the nursery stage persist after outplanting. We characterized microbiome succession over time on two species of kelp, Alaria marginata and Saccharina latissima, outplanted to open ocean cultivation sites in multiple geographic locations. We tested for host-species specificity of the microbiome and the effect of different abiotic conditions and microbial source pools on kelp microbiome stability during the cultivation process. We found the microbiome of kelp in the nursery is distinct from that of outplanted kelp. Few bacteria persisted on kelp following outplanting. Instead, we identified significant microbiome differences correlated with host species and microbial source pools at each cultivation site. Microbiome variation related to sampling month also indicates that seasonality in host and/or abiotic factors may influence temporal succession and microbiome turnover in cultivated kelps. This study provides a baseline understanding of microbiome dynamics during kelp cultivation and highlights research needs for applying microbiome manipulation to kelp cultivation.


Assuntos
Kelp , Microbiota , Bactérias
5.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36690340

RESUMO

Sea stars are keystone species and their mass die-offs due to sea star wasting disease (SSWD) impact marine communities and have fueled recent interest in the microbiome of sea stars. We assessed the host specificity of the microbiome associated with three body regions of the sea star Pisaster ochraceus using 16S rRNA gene amplicon surveys of the bacterial communities living on and in Pisaster, their environment, and sympatric marine hosts across three populations in British Columbia, Canada. Overall, the bacterial communities on Pisaster are distinct from their environment and differ by both body region and geography. We identified core bacteria specifically associated with Pisaster across populations and nearly absent in other hosts and the environment. We then investigated the distribution of these core bacteria on SSWD-affected Pisaster from one BC site and by reanalyzing a study of SSWD on Pisaster from California. We find no differences in the distribution of core bacteria in early disease at either site and two core taxa differ in relative abundance in advanced disease in California. Using phylogenetic analyses, we find that most core bacteria have close relatives on other sea stars and marine animals, suggesting these clades have evolutionary adaptions to an animal-associated lifestyle.


Assuntos
Microbiota , Síndrome de Emaciação , Animais , Estrelas-do-Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética
6.
Environ Microbiome ; 17(1): 55, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384808

RESUMO

BACKGROUND: Identifying meaningful ecological associations between host and components of the microbiome is challenging. This is especially true for hosts such as marine macroalgae where the taxonomic composition of the microbiome is highly diverse and variable in space and time. Identifying core taxa is one way forward but there are many methods and thresholds in use. This study leverages a large dataset of microbial communities associated with the widespread brown macroalga, Fucus distichus, across sites and years on one island in British Columbia, Canada. We compare three different methodological approaches to identify core taxa at the amplicon sequence variant (ASV) level from this dataset: (1) frequency analysis of taxa on F. distichus performed over the whole dataset, (2) indicator species analysis (IndVal) over the whole dataset that identifies frequent taxa that are enriched on F. distichus in comparison to the local environment, and (3) a two-step IndVal method that identifies taxa that are consistently enriched on F. distichus across sites and time points. We then investigated a F. distichus time-series dataset to see if those core taxa are seasonally consistent on another remote island in British Columbia, Canada. We then evaluate host-specificity of the identified F. distichus core ASVs using comparative data from 32 other macroalgal species sampled at one of the sites. RESULTS: We show that a handful of core ASVs are consistently identified by both frequency analysis and IndVal approaches with alternative definitions, although no ASVs were always present on F. distichus and IndVal identified a diverse array of F. distichus indicator taxa across sites on Calvert Island in multiple years. Frequency analysis captured a broader suit of taxa, while IndVal was better at identifying host-specific microbes. Finally, two-step IndVal identified hundreds of indicator ASVs for particular sites/timepoints but only 12 that were indicators in a majority (> 6 out of 11) of sites/timepoints. Ten of these ASVs were also indicators on Quadra Island, 250 km away. Many F. distichus-core ASVs are generally found on multiple macroalgal species, while a few ASVs are highly specific to F. distichus. CONCLUSIONS: Different methodological approaches with variable set thresholds influence core identification, but a handful of core taxa are apparently identifiable as they are widespread and temporally associated with F. distichus and enriched in comparison to the environment. Moreover, we show that many of these core ASVs of F. distichus are found on multiple macroalgal hosts, indicating that most occupy a macroalgal generalist niche rather than forming highly specialized associations with F. distichus. Further studies should test whether macroalgal generalists or specialists are more likely to engage in biologically important exchanges with host.

7.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36197997

RESUMO

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Assuntos
Microbioma Gastrointestinal , Transtornos do Crescimento , Intestino Delgado , Lipídeos , Boca , Animais , Bactérias , Pré-Escolar , Estudos Transversais , Transtornos do Crescimento/etiologia , Humanos , Complexo Antígeno L1 Leucocitário , Metabolismo dos Lipídeos , Síndromes de Malabsorção , Camundongos , Modelos Teóricos , Boca/microbiologia
8.
Mol Ecol ; 31(19): 5107-5123, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933734

RESUMO

Zostera marina (seagrass) is a coastal marine angiosperm that sustains a diverse and productive ecosystem. Seagrass-associated microbiota support host health, yet the ecological processes that maintain biodiversity and stability of the seagrass leaf microbiota are poorly understood. We tested two hypotheses: (1) Microbes select seagrass leaves as habitat such that they consistently host distinct microbiota and/or core taxa in comparison to nearby substrates, and (2) seagrass leaf microbiota are stable once established and are resistant to change when transplanted to a novel environment. We reciprocally transplanted replicate seagrass shoots (natural and surface sterilized/dead tissue treatments) among four meadows with different environmental conditions and deployed artificial seagrass treatments in all four meadows. At the end of the 5-day experiment, the established microbiota on natural seagrass partially turned over to resemble microbial communities in the novel meadow, and all experimental treatments hosted distinct surface microbiota. We consistently found that natural and sterilized/dead seagrass hosted more methanol-utilizing bacteria compared to artificial seagrass and water, suggesting that seagrass core microbiota are shaped by taxa that metabolize seagrass exudates coupled with minor roles for host microbial defence and/or host-directed recruitment. We found evidence that the local environment strongly influenced the seagrass leaf microbiota in natural meadows and that transplant location explained more variation than experimental treatment. Transplanting resulted in high turnover and variability of the seagrass leaf microbiota, suggesting that it is flexibly assembled in a wide array of environmental conditions which may contribute to resilience of seagrass in future climate change scenarios.


Assuntos
Microbiota , Zosteraceae , Biodiversidade , Ecossistema , Metanol , Água
9.
Trends Ecol Evol ; 37(7): 590-598, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466020

RESUMO

Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.


Assuntos
Simbiose , Filogenia
10.
Alcohol Clin Exp Res ; 46(4): 542-555, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102585

RESUMO

BACKGROUND: There is growing evidence that the gut microbiota can be shaped by early-life experiences/exposures, with long-term consequences for brain, behavior, and health. Changes in the gut microbiota have also been identified in neurodevelopmental disorders including Autism Spectrum Disorder and schizophrenia. In contrast, no studies to date have investigated whether the gut microbiota is altered in individuals with Fetal Alcohol Spectrum Disorder (FASD), the neurodevelopmental disorder that results from prenatal alcohol exposure (PAE). The current study was designed to assess the impact of PAE on the fecal microbiota. METHODS: We used a rodent model in which pregnant Sprague-Dawley rats were provided with an EtOH-containing diet or a control diet throughout gestation. Fecal samples were collected from adult male and female animals and 16s rRNA sequencing was performed. RESULTS: Overall, PAE rats showed greater richness of bacterial species, with community structure investigations demonstrating distinct clustering by prenatal treatment. In addition, prenatal treatment and sex-specific alterations were observed for many specific microbes. For example, in males, Bacteroides and Bifidobacterium, and in females, Faecalitalea and Proteus, differed in abundance between PAE and control rats. CONCLUSIONS: Taken together, these results show for the first time that PAE has a long-lasting and sex-specific impact on the fecal microbiota. Further research is needed that considers fetal microbiota in the development of new interventions in FASD.


Assuntos
Transtorno do Espectro Autista , Transtornos do Espectro Alcoólico Fetal , Microbiota , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Masculino , Gravidez , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley
11.
mSphere ; 6(4): e0008321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34406855

RESUMO

An estimated 3.5 billion people are colonized by intestinal parasites worldwide. Intestinal parasitic eukaryotes interact not only with the host but also with the intestinal microbiota. In this work, we studied the relationship between the presence of multiple enteric parasites and the community structures of gut bacteria and eukaryotes in an asymptomatic mother-child cohort from a semirural community in Mexico. Fecal samples were collected from 46 mothers and their respective children, with ages ranging from 2 to 20 months. Mothers and infants were found to be multiparasitized by Blastocystis hominis, Entamoeba dispar, Endolimax nana, Chilomastix mesnili, Iodamoeba butshlii, Entamoeba coli, Hymenolepis nana, and Ascaris lumbricoides. Sequencing of bacterial 16S rRNA and eukaryotic 18S rRNA genes showed a significant effect of parasite exposure on bacterial beta-diversity, which explained between 5.2% and 15.0% of the variation of the bacterial community structure in the cohort. Additionally, exposure to parasites was associated with significant changes in the relative abundances of multiple bacterial taxa, characterized by an increase in Clostridiales and decreases in Actinobacteria and Bacteroidales. Parasite exposure was not associated with changes in intestinal eukaryote relative abundances. However, we found several significant positive correlations between intestinal bacteria and eukaryotes, including Oscillospira with Entamoeba coli and Prevotella stercorea with Entamoeba hartmanni, as well as the co-occurrence of the fungus Candida with Bacteroides and Actinomyces, Bifidobacterium, and Prevotella copri and the fungus Pichia with Oscillospira. The parasitic exposure-associated changes in the bacterial community structure suggest effects on microbial metabolic routes, host nutrient uptake abilities, and intestinal immunity regulation in host-parasite interactions. IMPORTANCE The impact of intestinal eukaryotes on the prokaryotic microbiome composition of asymptomatic carriers has not been extensively explored, especially in infants and mothers with multiple parasitic infections. In this work, we studied the relationship between protist and helminth parasite colonization and the intestinal microbiota structure in an asymptomatic population of mother-child binomials from a semirural community in Mexico. We found that the presence of parasitic eukaryotes correlated with changes in the bacterial gut community structure in the intestinal microbiota in an age-dependent way. Parasitic infection was associated with an increase in the relative abundance of the class Clostridia and decreases of Actinobacteria and Bacteroidia. Parasitic infection was not associated with changes in the eukaryote community structure. However, we observed strong positive correlations between bacterial and other eukaryote taxa, identifying novel relationships between prokaryotes and fungi reflecting interkingdom interactions within the human intestine.


Assuntos
Bactérias/genética , Fezes/parasitologia , Microbioma Gastrointestinal/genética , Helmintos/fisiologia , Enteropatias Parasitárias/epidemiologia , Parasitos/fisiologia , Adolescente , Adulto , Animais , Bactérias/classificação , Estudos de Coortes , Feminino , Microbioma Gastrointestinal/fisiologia , Helmintos/genética , Interações Hospedeiro-Parasita , Humanos , Lactente , México/epidemiologia , Pessoa de Meia-Idade , Modelos Estatísticos , Mães , Parasitos/classificação , Parasitos/genética , RNA Ribossômico 16S/genética , População Rural/estatística & dados numéricos , Adulto Jovem
12.
PLoS Biol ; 19(8): e3001362, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388158

RESUMO

This Formal Comment provides clarifications on the authors' recent estimates of global bacterial diversity and the current status of the field, and responds to a Formal Comment from John Wiens regarding their prior work.


Assuntos
Biodiversidade
13.
Front Microbiol ; 12: 641483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897648

RESUMO

Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1ß relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.

14.
Environ Microbiol ; 23(5): 2617-2631, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817918

RESUMO

It is unclear how host-associated microbial communities will be affected by future environmental change. Characterizing how microbiota differ across sites with varying environmental conditions and assessing the stability of the microbiota in response to abiotic variation are critical steps towards predicting outcomes of environmental change. Intertidal organisms are valuable study systems because they experience extreme variation in environmental conditions on tractable timescales such as tide cycles and across small spatial gradients in the intertidal zone. Here we show a widespread intertidal macroalgae, Fucus distichus, hosts site-specific microbiota over small (meters to kilometres) spatial scales. We demonstrate stability of site-specific microbial associations by manipulating the host environment and microbial species pool with common garden and reciprocal transplant experiments. We hypothesized that F. distichus microbiota would readily shift to reflect the contemporary environment due to selective filtering by abiotic conditions and/or colonization by microbes from the new environment or nearby hosts. Instead, F. distichus microbiota was stable for days after transplantation in both the laboratory and field. Our findings expand the current understanding of microbiota dynamics on an intertidal foundation species. These results may also point to adaptations for withstanding short-term environmental variation, in hosts and/or microbes, facilitating stable host-microbial associations.


Assuntos
Fucus , Microbiota , Alga Marinha , Adaptação Fisiológica
15.
J Phycol ; 57(4): 1119-1130, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749821

RESUMO

Seaweed-associated microbiota are essential for the health and resilience of nearshore ecosystems, marine biogeochemical cycling, and host health. Yet much remains unknown about the ecology of seaweed-microbe symbioses. In this study, we quantified fine-scale patterns of microbial community structure across distinct anatomical regions of the kelp Laminaria setchellii. These anatomical regions represent a gradient of tissue ages: perennial holdfasts can be several years old, whereas stipe epicortex and blades are younger annual structures. Within blades, new growth occurs at the base, while the blade tips may be several months old and undergoing senescence. We hypothesized that microbial communities will differ across anatomical regions (holdfast, stipe, blade base, and blade tip), such that younger tissues will harbor fewer microbes that are more consistent across replicate individuals. Our data support this hypothesis, with the composition of bacterial (16S rRNA gene) and microeukaryote (18S rRNA gene) communities showing significant differences across the four anatomical regions, with the surfaces of older tissues (holdfast and blade tips) harboring significantly greater microbial richness compared to the younger tissues of the meristematic region. Additional samples collected from the surfaces of new L. setchellii recruits (<1y old) also showed differences in microbial community structure across anatomical regions, which demonstrates that these microbial differences are established early. We also observed this pattern in two additional algal species, suggesting that microbial community structure across host anatomy may be a common feature of the seaweed microbiome.


Assuntos
Kelp , Laminaria , Microbiota , Bactérias/genética , RNA Ribossômico 16S/genética
16.
J Eukaryot Microbiol ; 68(1): e12827, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065761

RESUMO

Epibiotic microorganisms link seagrass productivity to higher trophic levels, but little is known about the processes structuring these communities, and which taxa consistently associate with seagrass. We investigated epibiotic microeukaryotes on seagrass (Zostera marina) leaves, substrates, and planktonic microeukaryotes in ten meadows in the Northeast Pacific. Seagrass epibiotic communities are distinct from planktonic and substrate communities. We found sixteen core microeukaryotes, including dinoflagellates, diatoms, and saprotrophic stramenopiles. Some likely use seagrass leaves as a substrate, others for grazing, or they may be saprotrophic organisms involved in seagrass decomposition or parasites; their relatives have been previously reported from marine sediments and in association with other hosts such as seaweeds. Core microeukaryotes were spatially structured, and none were ubiquitous across meadows. Seagrass epibiota were more spatially structured than planktonic communities, mostly due to spatial distance and changes in abiotic conditions across space. Seawater communities were relatively more similar in composition across sites and more influenced by the environmental component, but more variable over time. Core and transient taxa were both mostly structured by spatial distance and the abiotic environment, with little effect of host attributes, further indicating that those core taxa would not show a strong specific association with Z. marina.


Assuntos
Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Microbiota , Plâncton/fisiologia , Estramenópilas/fisiologia , Zosteraceae/microbiologia , Colúmbia Britânica
17.
ISME J ; 15(5): 1372-1386, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33349654

RESUMO

Large eukaryotes support diverse communities of microbes on their surface-epibiota-that profoundly influence their biology. Alternate factors known to structure complex patterns of microbial diversity-host evolutionary history and ecology, environmental conditions and stochasticity-do not act independently and it is challenging to disentangle their relative effects. Here, we surveyed the epibiota from 38 sympatric seaweed species that span diverse clades and have convergent morphology, which strongly influences seaweed ecology. Host identity explains most of the variation in epibiont communities and deeper host phylogenetic relationships (e.g., genus level) explain a small but significant portion of epibiont community variation. Strikingly, epibiota community composition is significantly influenced by host morphology and epibiota richness increases with morphological complexity of the seaweed host. This effect is robust after controlling for phylogenetic non-independence and is strongest for crustose seaweeds. We experimentally validated the effect of host morphology by quantifying bacterial community assembly on latex sheets cut to resemble three seaweed morphologies. The patterns match those observed in our field survey. Thus, biodiversity increases with habitat complexity in host-associated microbial communities, mirroring patterns observed in animal communities. We suggest that host morphology and structural complexity are underexplored mechanisms structuring microbial communities.


Assuntos
Microbiota , Animais , Bactérias/genética , Biodiversidade , Ecologia , Filogenia
18.
Environ Microbiol Rep ; 12(5): 514-524, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32618124

RESUMO

Surveys of microbial systems indicate that in many situations taxonomy and function may constitute largely independent ('decoupled') axes of variation. However, this decoupling is rarely explicitly tested experimentally, partly because it is hard to directly induce taxonomic variation without affecting functional composition. Here we experimentally evaluate this paradigm using microcosms resembling lake sediments and subjected to two different levels of salinity (0 and 19) and otherwise similar environmental conditions. We used DNA sequencing for taxonomic and functional profiling of bacteria and archaea and physicochemical measurements to monitor metabolic function, over 13 months. We found that the taxonomic composition of the saline systems gradually but strongly diverged from the fresh systems. In contrast, the metabolic composition (in terms of proportions of various genes) remained nearly identical across treatments and over time. Oxygen consumption rates and methane concentrations were substantially lower in the saline treatment, however, their similarity either increased (for oxygen) or did not change significantly (for methane) between the first and last sampling time, indicating that the lower metabolic activity in the saline treatments was directly and immediately caused by salinity rather than the gradual taxonomic divergence. Our experiment demonstrates that strong taxonomic shifts need not directly affect metabolic rates.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiologia , Metano/metabolismo , Microbiota , Oxigênio/metabolismo , Filogenia , Salinidade
19.
ISME J ; 14(2): 609-622, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31719654

RESUMO

Documenting the natural diversity of eukaryotic organisms in the nonhuman primate (NHP) gut is important for understanding the evolution of the mammalian gut microbiome, its role in digestion, health and disease, and the consequences of anthropogenic change on primate biology and conservation. Despite the ecological significance of gut-associated eukaryotes, little is known about the factors that influence their assembly and diversity in mammals. In this study, we used an 18S rRNA gene fragment metabarcoding approach to assess the eukaryotic assemblage of 62 individuals representing 16 NHP species. We find that cercopithecoids, and especially the cercopithecines, have substantially higher alpha diversity than other NHP groups. Gut-associated protists and nematodes are widespread among NHPs, consistent with their ancient association with NHP hosts. However, we do not find a consistent signal of phylosymbiosis or host-species specificity. Rather, gut eukaryotes are only weakly structured by primate phylogeny with minimal signal from diet, in contrast to previous reports of NHP gut bacteria. The results of this study indicate that gut-associated eukaryotes offer different information than gut-associated bacteria and add to our understanding of the structure of the gut microbiome.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Metagenômica , Primatas/microbiologia , Primatas/parasitologia , Animais , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Blastocisto/classificação , Cercopithecidae/microbiologia , Cercopithecidae/parasitologia , Cilióforos/classificação , Cilióforos/genética , Cilióforos/isolamento & purificação , Dieta , Endolimax/classificação , Endolimax/genética , Endolimax/isolamento & purificação , Entamoeba/classificação , Entamoeba/genética , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Fezes/microbiologia , Fezes/parasitologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Hominidae/microbiologia , Hominidae/parasitologia , Especificidade de Hospedeiro , Lemur/microbiologia , Lemur/parasitologia , Nematoides/classificação , Nematoides/genética , Nematoides/isolamento & purificação , Filogenia , Platirrinos/microbiologia , Platirrinos/parasitologia
20.
PLoS Biol ; 17(2): e3000106, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716065

RESUMO

The global diversity of Bacteria and Archaea, the most ancient and most widespread forms of life on Earth, is a subject of intense controversy. This controversy stems largely from the fact that existing estimates are entirely based on theoretical models or extrapolations from small and biased data sets. Here, in an attempt to census the bulk of Earth's bacterial and archaeal ("prokaryotic") clades and to estimate their overall global richness, we analyzed over 1.7 billion 16S ribosomal RNA amplicon sequences in the V4 hypervariable region obtained from 492 studies worldwide, covering a multitude of environments and using multiple alternative primers. From this data set, we recovered 739,880 prokaryotic operational taxonomic units (OTUs, 16S-V4 gene clusters at 97% similarity), a commonly used measure of microbial richness. Using several statistical approaches, we estimate that there exist globally about 0.8-1.6 million prokaryotic OTUs, of which we recovered somewhere between 47%-96%, representing >99.98% of prokaryotic cells. Consistent with this conclusion, our data set independently "recaptured" 91%-93% of 16S sequences from multiple previous global surveys, including PCR-independent metagenomic surveys. The distribution of relative OTU abundances is consistent with a log-normal model commonly observed in larger organisms; the total number of OTUs predicted by this model is also consistent with our global richness estimates. By combining our estimates with the ratio of full-length versus partial-length (V4) sequence diversity in the SILVA sequence database, we further estimate that there exist about 2.2-4.3 million full-length OTUs worldwide. When restricting our analysis to the Americas, while controlling for the number of studies, we obtain similar richness estimates as for the global data set, suggesting that most OTUs are globally distributed. Qualitatively similar results are also obtained for other 16S similarity thresholds (90%, 95%, and 99%). Our estimates constrain the extent of a poorly quantified rare microbial biosphere and refute recent predictions that there exist trillions of prokaryotic OTUs.


Assuntos
Archaea/genética , Bactérias/genética , Biodiversidade , Planeta Terra , Bases de Dados Genéticas , Filogenia , Células Procarióticas/metabolismo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...